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Abstract

Two types of multidinenaionai processes are defined, The first of these
generalizes a univariate IFRA process due to Ross and reldtes to a multivariate
concept of IFRA due to Esary and Marshall. The second of these relates to a
multivariate concept of IFRA due to the present authors.

Decompositions for multistate monotone sttructuire functions are given
and behavior of nonincreasing stochastic processes such as those given dbove

is analyzed. Various coherence assumptions for mulitistate systems are also

analyzed.
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§0. Introduction

Ross (7] has defined a univariate nondecreasing process to he IFRA
(increas;ng failure rate average) if certain lifetimes associated with the
process are IFRA. See Barlow and Préschan [2] for a discussion of IFRA life-
times. Extensions of IFRA to multivariate lifetimes have been proposed by Block
and Savits [3] and Esary and Marshall [4]. In this paper the univariate concept
of Ross is extended to multidimensional processes and related to IFRA multi-
variate lifetimes,

In Section 1 a characcerization of univariate IFRA processes is given. The
Ross concept of IFRA proce:;ses is extended to vector processes and an alternate
form is derived. A closure theorem and various properties are established for
these processes. It is shown in Theorem 2.4 of Section 2, that lifetimes
associated with these processes satisfy the condition that any monotone system
formed with these lifetimes is IFRA in the univariate sense, Furthermore this
property characterizes such processes. This property, called Condition B in
Esary and Marshall [4], was one of the definitions of multivariate IFRA
discussed by those author:s. Another type of multidimensional IFRA process is b
defined. For this process, the associated lifetime satisfy the MIFRA property
of Block and Savits [3].

In Section 3, decompositions of multistate structure functions are given.
The main result, Theorem 3.10, iﬁ that a multistate structure function for a
system whose components can operate at a finite number of levels can be written as
a sum of certain binary ;tructure functions. Using these ideas, the behavior
of nonincreasing stochastic processes (such as those discussed in Sections 1 and
2) is analyzed. Various coherence assumptions for multistate systems proposed
by El~Neweihi, Proschan and Sethuraman [5] and Griffith [6] are analyzed in

Section 4.




§1. IFRA processes and the IFRA closure theorem,

Let X(t) be a nonnegative, nonincreasing right-continuous random process.
According to Ross [7], the process X(t) is called an IFRA process if and only if

the random variable
(1.1) T, =inf (£ 50 1+ XME) ¢ &)

is IFRA for every a > 0. Equivalently, we have the alternative characterization

below.

(1.2) Theorem. X(t) is an IFRA process if and only if

(1.3) E ()] < Y mxeen]

for all nonnegative nondecreasing functions h and all 0 <a <1, t > 0,

Proof. First agssume that X(t) is an IFRA process and consider h of the form

h(x) = I(a’m) (x), a > 0. Since, by right-continuity, X(t) > a if and only if

Ta > t, we have

E [h(X(t))] = P(X(t) > a) = P(T, > t)

1/a /

<2 > ar) = 2V (xGae) > @) = £V (6 (x(at))

for al1 0 < a <1, t > 0. Now consider h of the form h(x) = I(a.m) (x),

a > 0 (the case a = 0 1s clear). Since I (x) ¥ h(x), the inequality

(a=1/n,=)
(1.3) is also valid for such h. The general result now follows by taking
nonnegative linear combinations of such functions and passing to the limit as
in Block and Savits [3].

Conversely, if (1.3) is true, then (1.1) follows by taking

h(x) = 1 (x)).

(a,»)




Ross (7] proved the IFRA clésure theorem under the assumption of

independent components. We obtain the same results without the assumption of

independence. First, however, we need some definitions.

(1.4) Dpefinition. An upper set UC R is a subset having the property that

1f x € U and y > x, then Y € U. If in addition U is an open subset, we call
Now 1e£ X(t) = (Xl(t)...., xn(:)) be a vector-valued stochastic process.
We assume that X(t) is‘nonnegative, nonincreasing and right-continuous.

(1.5) Definition. X(t) is said to be a (vector+valued) IFRA process if and

only if for every upper domain U, the random variable

Ty = inf {t > 0 : X(t) { v}

is IFRA.

Clearly this includes the IFRA class considered by Ross [7] in the case
n =1, Again, as in (1.2), we have the alternative characterization given below.

(1.6) Theorem. x{t) 1s a (vector-valued) IFRA process if and only if

1.7 E ()] < £V 1l xen 1.

- For all continuous nomnegative nondecreasing functions h and all 0 < o <1,
t>0.

Proof. The proof is very similar to (1.2): first show that (1.7) ie true

if h(x) = Iu(y for U an upper domain and then use the argument in Block and
Savits [3] for general h.

(1.8) Remark. The restriction to continuous nonnegative nondecreasing n in

Theorem 1.6 is just a technical convenience. As in Blo¢ck and Bavits {31, we

’
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can show that if (1.7) is valid for all continuous h, then it is valid for all

Borel measurable nonnegative nondecreasing h.

The next theorem describes some properties of the class of IFRA processes.

We henceforth dispense with the adjective vector-valued. ‘

(1.9) Theorem
(1) If X(t) is an IFRA process and wl,..., wk are continuous
nonnegative nondecreasing functions, then (wl(g(t)),..., wk(gﬁt)))

is an IFRA process.

(11) 1f (Xl(t),....-xn(t)) and (Yl(t),..., Ym(t)) are IFRA processes
which are independent at e¢ach time t, then (xl(t),..., xn(t),

Yl(t),..., Yn(t)) is an IFRA process.

(i11) 1f gﬂ(t), n=1,2,..., are [FRA processes and En(t) > X(t)
weakly for each t, then X(t) is an IFRA process provided it is

also nonnegative, nondecreasing and right-continuous.
Proof. The proofs are clear and are left to the reader.

Let ¢ be a multistate mohotone structure function of n-components, i.e.,

o(x) = ¢(x1...., xn) is continuous nonnegative and nondecteasing in each

argument., : .

(1.10) Corollary .

1) (IFRA closure theorem). If ¢ is a multistate monotone structure
function and X(t) is an IFRA process, then ¢(X(t)) is an IFRA
process.

(i1) (Convolution theoteuo.' 1f (Xl(t),..., xn(:)) and(Yl(t)...., Yn(t))
are IFRA processes which are independent at each time t, then

(Xl(t) + Yl(t),.... Xn(t) + Yﬂ(t)) is an IFRA process.




(11i) 1If (Xl(t),..., Xn(t)) is an IFRA process and J C {1,..., n},

then (Xj(t) ¢t j ¢ J) 1s an IFRA process.

§2. TIFRA processes and multivariate IFRA concepts. -
Let T be a nonnegative random variable and X(t) its indicator process,

i.e., X(t) = I (T). Then clearly X(t) is an IFRA process if and only if

(e,»)
T is an IFRA random variable since
{ 0 if a>1
T =inf{e>0:X(t)<al= ) T if 9 <axl.
|
! +o if a<o0
e

Now let (Tl""' Tn) be a nonnegative random vector. If we 4ssume that
(Tl...., Tn) is MIFRA in the sense of Block and Savits [3], then there are
many ways of constructing IFRA processes. For example, suppose that
$(t; Xiseees X,), t, Xppeens X > 0, is nonnegative, Borel measureable and
nondecreasing in x for'fixed t, right-continuous and nonincreasing in t for

fixed x, and satisfies
o(t; x1/“""’ x“/a) < ¢ty xp5000, %)

for all 0 <a <1, t > 0, x eIR}. Then X(t) = ¢(t; Tyseevs T ) is an IFRA
process. Indeed, let h be any continuous nonnegative nondecreasing function.

Then
EX(E)] = EhCoCt; T oeee, 1) < BV (0%(o(t; T /0400, T /a))]

gl/e (h* (6 (at; Tiaeres TN = gHfe [ (Xat))].

P




In particular, if x < X < oo 1'xn

PR & is a reordering of xl,..., X s then

n

n if 0<t<x

e 1:n
¢ (t; Xpseers xn) = n-k if xk:n RE xk+1:n’ = L. aees 0=l
0 if LE2

has the desired properties.

(2.1) Example. Let (S,T) be MIFRA and set

2 £ B<t<sta ,D
X(e) =11 if min (S,T) < t < max (S,T)

0 if t > max (S,T)
Then X(t) is an IFRA process.

(2.2) Example. Let (S5,T) have the distribution with joint density

30 if - 3/8 <8 <1/2, 3/4 <t <1
f(s,t) =< 1 if . 1/8 <8 <3/8, 1/2 <t < 2/3

2 if 0<s <1/8, 2/3 <t < 3/4.

Then S and T are IFRA and S < T with probability one: Consequently,

2 if 0<t<s
CX(e) =11 if $ ety

0 if T

IA

t

is an IFRA process. But (5,T) is not MIFRA since P(S > t, T > 4t) has support

that 1is not an interval and we know that if (S,T) was MIFRA, then min (S, T/4)

would be IFRA.




&

Recall that from Esary and Marshall [4], a nonnega'ive ramdom vector
(Tl...., Tn) satisfies condition (B) if and only if r(T1,..., Tn) is IFRA for
every life function t corresponding to a monotone binary structure function ¢.

This condition can be characterized in terms of IFRA processes as follows.

(2.3) Theorem. Let T = (Tl""' Tn) be a nonnegative random vector. Then T

satisfies condition (B) if and only if the indicator process X (t) = (Xl(t)""’ Xn(t)},

where Xi(t) = I(t‘w) (Ti)’ is an IFRA process.

Proof. Suppose that the indicator process X(t) is an IFRA process. If ¢ is

a binary monotone structure function with corresponding life function 1, then

P(r > t)

E[¢(X,(t),..., X (1))]

EV/% 6% x(at))] = P/%(x > ar)

ia

and so t is IFRA.

Now suppose that T = (Tl,..., Tn) satisfies condition (B) and let U be any

upper domain inR", If x = (Xseees %) is any binary vector of ones and

zeros, set

13 xTeW

(x) = v
by(x 0 otherwise

Then ¢U is a binary monotone structure function. Furthermore, if Ty is its

corresponding life function and Ty = iof{t I X(t) f U}, then Ty = Ty But
by assunpfioﬁ,'ru is IFRA and so Td is also IFRA. Consequently, X(t) is an

IFRA process.

Theorem (2.3) extends to the general case as follows. Let X(t) be an
IFRA process and let U be an upper domain 1h‘Bh} Then, according to Block and

Savits (3], there exist fundamental upper domains Ul such that U;:l ”1 =U

B e T T————




and TU T TU. Since the IFRA class is closed under weak limits, it suffices to
z a
show that Ty is IFRA for every fundamental upper domain U. But by definition, U

is a fundamental upper domain if and only if U = uP

9=1 U , where

= n .
Uy ={xelR :x >z,} and 2y, are real numbers for 1 < i <n, 1 <4 <p.
Clearly T = max TU » and if we set T, = inf{t > 0 : X;(t) i-zig}’ then
1<2<p "2
T = max min T .

U 1<<p 1<i<n %4

Consequently we may state the following result.

(2.4) Theorem. X(t) is an IFRA process if and only if every finite collection

of {Tiz :1<1<n, z R} satisfies condition (B) of Esary and Marshall.

(2.5) Corollary. 1In the finite state case, i,e., Xi(t) & 10,1, .s.4 M)
for all t > 0, 1 = 1,..., n, X(t) is an IFRA process if and only if

{Tij :1<1<n, 0 <3 <M} satisfies conditicn (B), where

Tyy = inflt > 0 : X, (¢) < j}

3

Clearly, in the finite state case, if the finite collection
{Tij :1<4<n, 0<3j <M} are MIFRA, then they satisfy condition (B). This

leads to the following definition.

(2.6) Definition. Let X(t) be a nonnegative nondecreasing right-continuous

process. Then we say that X(t) is an MIFRA process if and only if for every

finite collection Ul""’ Um of upper domains in]Rn, the random vector

(T,, y..-4 T, ) is MIFRA.
nl. um

As example (2.2) shows, there exist IFRA processes which are not MIFRA.

The analogous result to Theorem (2.4) is stated below.

> P



(2.7) Theorem. X(t) is an MIFRA process if and only if every finite collection

of {T,, :1<4<n, zcR} is MIFRA.

(2.8) Reuwark. Note that for iFRA processes, the upper domains are defined
with respect to the state space, whereas for MIFRA vectors, the upper domains

are defined with respect to the time space.

§3. Decompositions of multistate structure functions.

Multistate structure functions have been studied by Barlow [1], El-Newechi,
Proschan and Sethuraman (henceforth EPS) (5] and Griffith [6]. EPS and
Griffith make a variety of coherence assumptions which we shall not make here.
ﬁarlow uses a decomposition of the binary structure function to define a multi-
state structure function. In this section we obtain a general decomposition of
this type for finite multistate structure functions along with various properties
of these functions. The first two results below were proven by Griffith [6].

The notation of Barlow and Proschan [2] and EPS [5) is used here.

Let S = {0,1,,.., M} and ¢ : S™" > S be a nondecreasing function. The values
taken by ¢ will represent the system performance and for each i, xq will denote
the performance of the ith component. We distinguish M+l performance levels
ranging from perfect functioning (ievel M) to complete failure (leével 0). The
assumption that ¢ i1s nondecreasing cortesponds to the notion that the system
does not perform worse if its components are improved.

We first consider a function ? ¢ s" 4 s whefe S = {0,1,..., M} and give

conditions for ¢ to be nondecreasing.
(3.1) Theorem. ¢ is nondecreasing if and only if
2 o(x vy > o(x) v o(y)

if and only if
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oA y) < 0(x) A O(Y).

(3.2) Theorem. Let ¢ be nondecreasing. Then for all x = (xl,..., xn) e §"
(1) min X 2 6(x) if and only if ¢(k) > k all k ¢ S.
i
(11) o(x) < max x, if and only if o(k) < k all k ¢ S.
i

Consequently, min x, < ¢(x) < max x,  if adid only if ¢(k) = k for all k € S.
i

i i
An easy consequence of the monotonicity assumption is stated below
(3.3) Theorem, Let ¢ be nondecreasing. Then

(1) uinx e((x)y3 0) < (%) < min o((x),, M)
i

(11) ¢(min xi) 2 6(x) < o(max x,;) .
o S 1

Furthermore these bounds are not compatible in the sense that there exist
systems ¢ for which (1) is a better bound than (ii) and vice-versa.

For the next results besides assuming ¢ is nondecreasing, we impose the
condition that #(Q) = 0 and o(M) = !.. This merely states that if all components
fail, the system fails and if all components are functioning perfectly, the
system functions perfectly. We do nojt make the assumption imposed by EPS and
Griffith that 4(k) = k for k = 1,..., M-1. We will call such a function ¢ a

multistate monotoné structure function (MMS).

(3.4) Definition. A vector x is called an upper (lower) vector for level k

of a MMS if o(x) > k(6(x) < k). It is called a critical upper (lower) vector

for level k 1if in addition y < x implies ¢(y) < k (4f y > x implies ¥(y) > k).
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The set of all critical upper (lower) véctérs for level k is denoted by

U or Uk(b) if necessary (t‘k or Lk(Q)).. If xe Uy, k= 1,2,..., M, let
U (x) = U, (¢3%) = {(1,x)) : x; # 0}.

1f !‘ € H' k - o.’lgﬁttg ""l, 1et
Ly (%) = Lk(‘o';gt)_ = {(,yxg) s x; # M}

as we will see; these sets play the role of min path sets and min cut sets
respéctively. \

As usual, the concept of duality changes upp.er vector concepts to lower
vect;ar coacepto._._"“'!lore.‘ precisely, if 'y ‘:ls an MMS, then oD(g) = M-0(M-x) is also
an MMS called the dual of ¢, The proofs of the following two results are

obvious.

(3.5) Theorem. The vector x is an upper vector for level k of ¢ if and only if
M-x 18 a lower vectdr for level M-k of oP. Furthermore, x € Uy (¢) if and only

if M-x € Ln-kﬂb).

(3.6) Theorem. For k > 0 (x) > k if and only 1if x> 50 for some 3_0 € 1.

(3.7) Remark. The assumption ¢(M) = M implies LN # ¢ for k = 1,..., M and
U, # ¢ inplies 600 = M. ‘ J

Now we define the binary function ¢, for Men binary variables

l-(yij_tliiih.lijf_ﬂ)by

(3.8) T A et e oy R Ly
D L L il N T | 0 = e

-

Althou'fl this function is defined for all Men values of y, we are only interested

in this function on the domain given dby the image of the following function.
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Ve define « : 8" » ‘(0.1}“'n by a(x) = (a“(g:) t1<4iz2n,1%<3 <M, vhere
x ¢ S® and “11(5) = 11f x; > § and 0 othervise. 4y 4

(3.9) Lemma. For k > 0 &(x%) > k 1f and only if ok(a(i)) =1,

(3.10) Theorem. ¢(x) = ? o (a(x)).
k=1

Since the proofs are straightforward, we omit them. Theotem (3.10) is a
type of decomposition result analogous to those using min path and min cut sets

in the binary case.

(3.11) Remarks. (1) Note that Ol(u(g_)i > Oz(a(g)) > obe 2 8 (alx))s
equivalently, ¢) > ¢, > ***> 4y on A = a(s") = {y = (yy9) ¢ 3f iy = Ls then

yil =] for all ¢ = 1‘00.. j‘l .

(11)  For a binary monotone structure function ¢(x) of n binary variables,
if x is a min path vector (see Barlow and Proschan [2]) then the min path set
corresponding to x is defined by Cl(gc_) = {1 X, = 1}. Designating the min path
sets of ¢ by Pl. PZ""' PP’ the min pdath decomposition is gi{ren by
¢(x) = max min x, .
%ﬁjﬁp 1er
The sets (Uk(z). X ¢ U} play a similar role here. Furthermore, in terms of
the binary monotone structure function of binary variables, ‘k(l)' where y is
restricted to A, if y is a min path \gaetot. then we could assdciate the set
1 1 = 0) = U (%) whers al(x) = y, Th
C.(y) = ((1,9) : Yig = Lo ¥y 41 ), U, (%) re alx) = y. us in this sense
the "k(-’-‘-) are also the min path sets of ‘n‘l’- We shall call the sets

_-(iy;(‘:)’; xe ) th.{n path sets of Qt'; If P is a min path set of ¢, and

(1,4) ¢ P, then (1,2) ¢ P for any £ # §.

e
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(111) 1f 01,.... OH are binai'y minotone structure functions of the binary
variables (’1_1 t1<1<iy, 1< <M restricted to A and they satisfy (1)
o7 M
above, then o(x) = | L (a(x)) 1s a multistate monotone structure function
‘ k=1 &

k=l whose decomposition yields precisely the $roecey bye

(3.12) Example. An example will serve to illustrate the procedure, Let
¢ {0,1,2}2* {0,1,2} with 0 =4 (0,0) = ¢ (1,0), 1 = 4(0,1) = ¢ (0,2) = ¢ (1,2)
=¢(1,1), 2 =9(2,0) =$(2,1) =¢(2,2). Then

U, = {(2,0), (0,1)}, U, ={(2,0)}

and

8,(2,0) = {(1,2)} = U,(2,0),

U O, = (2,1) .

L}
Then
¢,(y) = max min’ y' = . min y'-y
2T wu, e, M 1,y 0,0 M 712

and

‘l(l) * max

nin y,, "max (.., y.)
xel,  (1,9)ev, (x) i1 21’ 7y

wvhere we have
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: 2
x @, | 4@ | 400 | 400 - k§1 ¥y ()

(0,0) | (0,0,0,0) 0 0 0

©0,1 | 000,00 | 1 0 i

0,2) | (0,0,1,1) 1 0 1

1,0) | (1,0,0,0) 0 0

1,1 | ,0,1,0) 1 { ) 1

(1,2) | (1,1,0,0) 1 1 2

(2,0) | 1,1,0,0) 1 ! 2

(2,2) (1,1,1,1) 1 1 e
Notice, for example, that to the cri.tical upper vector of level 1 (2,0)
corresponds the set 01(2.0) = {(1,2)}. Also notice that a(2,0) = (1,1,0,0)
is a min path vector for N in the sense that 01(1.1.0.0) = 1 but
¢1(1,0.0,0) =0 ((0,1,0,0) ¢ A 80 we dt;n't consider it). The corresponding
min path set is C,(1,1,0,0) = {(1,2)} which is 01(2,0).

A similar decomposition can be obtained using critical lower vectors.
More precisely, define the binary ltﬂlct\lte{ function *k of the M:n binary
variable z = ('1j t1<1<n, 0<3 ¢HN-1) by

% (2 = :!Ju max t,
xely (1.5):11‘(5)
for k = 0,1,..., M=1. As in the previous case we restrict the domain of
¥ (2) to the image of § : st - {o.n""‘ where B(x) = (815(5) t1<4i<n,
0 <% < M-1) and aij(_ag) = 04if x, < J and 1 otherwise.



M-1
(3.13) Theorem. &(x) = ):o ¥, (B(x)
k=

Proof. The proof is most easily obtained by duality arguments.

We now consider the stochastic behavior. Let Xi(t) be a right-continuous
nonincreasing stochastic process with values in S; i.e,, xi(t) tepresents the

statistical behavior of component 1., Set X(e) = (Xl(t),..q' xn(t)). We define

[ "

Ty iﬁf{: g_b.s X, (0) < 1)

(]
)

T, = inf{t 2 0 ¢ o(X(t)) < k)
for £ = 1,..., nand j, k = 0,1,..., M1,
(3.14) Theorem. For k = 0,1,..., M-1,

T = max . min T
k 4 : i j-l
xeUy (h”evkﬂ(_tg) ¥

= min . max 1‘1
xel,  (1,9)el, () i

Proof. First we observe that #(X(t)) < k if and only if $paq (@(X())) = 0,

k+] k+

Consequently, Tk & 1 " where t

Letnf (€30 ¢ g, (a(X(6)) = 0}, But
from the results in the binary case,
r?ﬂ % max ’ min o oSl =e
xeU (hj)el!k_‘_l(!_).

vhere 7, = inf {t '_>_o : aﬁ(_X_(t)) = 0}. Since

-

15




Ty " inf{t > 0 “13‘5—('” = 0} = inf{t > 0 : X,;(¢) < j}
« inf{t > 0 : X, (t) <3j-1} = Tl.j-l'

we are done. The second half follows similarly,

§4. Some remarks about coherence assumptions,

As was recasarked earlier, EPS [Sl‘ and Criffith [6) also studied the
deterministic properties of mj.tiaute monotone structure functions in the
finite state case. Besides the basic monotonicity assumption, however, they
assumed that ¢(k) = k for all k ¢ S plus a type of coherence assumption. In

[6), Griffith delineated three distinct coherence conditions, which we list
below. ]

(sC): ¢ is said to be strongly coherent if for any compoment { and any
level j, there exists x such that &(j; ¢ x) = § while o(ey : %) +3

for ¢ ¢ 3.

{C): ¢ is said to be coherent if for any component { and any level
J > 1, there exists x such that 0((.1--1.)1 1 x) < o4, ¢ x).

(WC): ¢ is said to be weakly coherent if for sny component i, there exists
x such that #(0, : x) < oMM, : x).

EPS [5]) assumed condition (SC) for their class whereas Criffith [6] showed
that all of the results of [S] hold under the assumption of (C), but some are
false under (WC). Loosely speaking, condition (SC) says that every level of
every component is relevant to the same level of the system ¢4 condition (C)

s7s that every level of every component is relevant to the system &; condition

(W) says that every component is relevant to the system ¢.

16
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In terms of the decomposition (3.10), we can paraphrase the above ds
follove. Let R =U_, ink U (X). Then ¢ is coherent if and only if for
every i and j, Yij is relevant to some ’k' ® is weakly ¢ohetent if and only
if for every i, there exists j such that (i,j) ¢ R; i.e., for every 1, there
exists j such that yi 1 is relevant to some ’k' The condition of strong cohererice
and the conditions ®(k) > k, ¢(k) < k for k € S can be similarly rephrased, but
since they are somewhat moi'e complicated to state, and lose their intuitive

content, we will not state them here.

(4.1) Theorem. Let ¢ be a multistate monotonic structure function on

S = {0,1,..., M}. Then

(1) *(xvy = ¢(x) vo(y) for all x, y ¢ s™ 4f and only if
¢(x) = max hy(x,) where h, (3) = (3,3 0.
i ;i

(11) o(xAy) = o(x) A ¢(y) for all x, y ¢ s" if and only 1f
o(x) = -:n Bi(xi) where Bi(j) - 0(31; M.

The proofs are very simple and so are omitted. Thus in case (1), ¢

2

bn(xn) A

must be a parallel system

while in case (i11);, ¢ must be a series system

3 gfﬁ{) - Hy(x) = +oo = B (k) = .
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In EPS [5], under the assumption of (SC), it was comcluded that hi(j) = j and

Bi(j) = jforalli=1,..., n, §=0,..., M. Criffith [6) concluded the same
result assuming the weaker condition (C). Griffith also showed that the result

was false under (WC).

L
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